3.2911 \(\int \frac{x}{\sqrt{a+b (c+d x)^4}} \, dx\)

Optimal. Leaf size=154 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} (c+d x)^2}{\sqrt{a+b (c+d x)^4}}\right )}{2 \sqrt{b} d^2}-\frac{c \left (\sqrt{a}+\sqrt{b} (c+d x)^2\right ) \sqrt{\frac{a+b (c+d x)^4}{\left (\sqrt{a}+\sqrt{b} (c+d x)^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d^2 \sqrt{a+b (c+d x)^4}} \]

[Out]

ArcTanh[(Sqrt[b]*(c + d*x)^2)/Sqrt[a + b*(c + d*x)^4]]/(2*Sqrt[b]*d^2) - (c*(Sqr
t[a] + Sqrt[b]*(c + d*x)^2)*Sqrt[(a + b*(c + d*x)^4)/(Sqrt[a] + Sqrt[b]*(c + d*x
)^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*(c + d*x))/a^(1/4)], 1/2])/(2*a^(1/4)*b^(1/4
)*d^2*Sqrt[a + b*(c + d*x)^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.369664, antiderivative size = 154, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.353 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} (c+d x)^2}{\sqrt{a+b (c+d x)^4}}\right )}{2 \sqrt{b} d^2}-\frac{c \left (\sqrt{a}+\sqrt{b} (c+d x)^2\right ) \sqrt{\frac{a+b (c+d x)^4}{\left (\sqrt{a}+\sqrt{b} (c+d x)^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d^2 \sqrt{a+b (c+d x)^4}} \]

Antiderivative was successfully verified.

[In]  Int[x/Sqrt[a + b*(c + d*x)^4],x]

[Out]

ArcTanh[(Sqrt[b]*(c + d*x)^2)/Sqrt[a + b*(c + d*x)^4]]/(2*Sqrt[b]*d^2) - (c*(Sqr
t[a] + Sqrt[b]*(c + d*x)^2)*Sqrt[(a + b*(c + d*x)^4)/(Sqrt[a] + Sqrt[b]*(c + d*x
)^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*(c + d*x))/a^(1/4)], 1/2])/(2*a^(1/4)*b^(1/4
)*d^2*Sqrt[a + b*(c + d*x)^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 18.7274, size = 138, normalized size = 0.9 \[ \frac{\operatorname{atanh}{\left (\frac{\sqrt{b} \left (c + d x\right )^{2}}{\sqrt{a + b \left (c + d x\right )^{4}}} \right )}}{2 \sqrt{b} d^{2}} - \frac{c \sqrt{\frac{a + b \left (c + d x\right )^{4}}{\left (\sqrt{a} + \sqrt{b} \left (c + d x\right )^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} \left (c + d x\right )^{2}\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} \left (c + d x\right )}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} d^{2} \sqrt{a + b \left (c + d x\right )^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x/(a+b*(d*x+c)**4)**(1/2),x)

[Out]

atanh(sqrt(b)*(c + d*x)**2/sqrt(a + b*(c + d*x)**4))/(2*sqrt(b)*d**2) - c*sqrt((
a + b*(c + d*x)**4)/(sqrt(a) + sqrt(b)*(c + d*x)**2)**2)*(sqrt(a) + sqrt(b)*(c +
 d*x)**2)*elliptic_f(2*atan(b**(1/4)*(c + d*x)/a**(1/4)), 1/2)/(2*a**(1/4)*b**(1
/4)*d**2*sqrt(a + b*(c + d*x)**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.895832, size = 330, normalized size = 2.14 \[ \frac{\sqrt [4]{-1} \sqrt{2} \sqrt{-\frac{i \left (\sqrt [4]{-1} \sqrt [4]{a}+\sqrt [4]{b} (c+d x)\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}} \left (\sqrt{b} (c+d x)^2+i \sqrt{a}\right ) \left (\left (\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} c\right ) F\left (\left .\sin ^{-1}\left (\sqrt{-\frac{i \left (\sqrt [4]{b} (c+d x)+\sqrt [4]{-1} \sqrt [4]{a}\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}}\right )\right |-1\right )-2 \sqrt [4]{-1} \sqrt [4]{a} \Pi \left (-i;\left .\sin ^{-1}\left (\sqrt{-\frac{i \left (\sqrt [4]{b} (c+d x)+\sqrt [4]{-1} \sqrt [4]{a}\right )}{\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)}}\right )\right |-1\right )\right )}{\sqrt [4]{a} \sqrt{b} d^2 \sqrt{\frac{\sqrt{b} (c+d x)^2+i \sqrt{a}}{\left (\sqrt [4]{-1} \sqrt [4]{a}-\sqrt [4]{b} (c+d x)\right )^2}} \sqrt{a+b (c+d x)^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[x/Sqrt[a + b*(c + d*x)^4],x]

[Out]

((-1)^(1/4)*Sqrt[2]*Sqrt[((-I)*((-1)^(1/4)*a^(1/4) + b^(1/4)*(c + d*x)))/((-1)^(
1/4)*a^(1/4) - b^(1/4)*(c + d*x))]*(I*Sqrt[a] + Sqrt[b]*(c + d*x)^2)*(((-1)^(1/4
)*a^(1/4) - b^(1/4)*c)*EllipticF[ArcSin[Sqrt[((-I)*((-1)^(1/4)*a^(1/4) + b^(1/4)
*(c + d*x)))/((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))]], -1] - 2*(-1)^(1/4)*a^(1
/4)*EllipticPi[-I, ArcSin[Sqrt[((-I)*((-1)^(1/4)*a^(1/4) + b^(1/4)*(c + d*x)))/(
(-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))]], -1]))/(a^(1/4)*Sqrt[b]*d^2*Sqrt[(I*Sq
rt[a] + Sqrt[b]*(c + d*x)^2)/((-1)^(1/4)*a^(1/4) - b^(1/4)*(c + d*x))^2]*Sqrt[a
+ b*(c + d*x)^4])

_______________________________________________________________________________________

Maple [C]  time = 0.038, size = 1528, normalized size = 9.9 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x/(a+b*(d*x+c)^4)^(1/2),x)

[Out]

2*((1/b*(-a*b^3)^(1/4)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d)*(((-I/b*(-a*b^3)^(1/4)-c)
/d-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-
c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)*(x-(I/b*(-a*b
^3)^(1/4)-c)/d)^2*(((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)*(x-(-1/b*
(-a*b^3)^(1/4)-c)/d)/((-1/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/
b*(-a*b^3)^(1/4)-c)/d))^(1/2)*(((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/
d)*(x-(-I/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-
c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)/((-I/b*(-a*b^3)^(1/4)-c)/d-(I/b*(-a*b^
3)^(1/4)-c)/d)/((I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(b*d^4*(x-(1/
b*(-a*b^3)^(1/4)-c)/d)*(x-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(-1/b*(-a*b^3)^(1/4)-c)/d
)*(x-(-I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)*((I/b*(-a*b^3)^(1/4)-c)/d*EllipticF((((-I
/b*(-a*b^3)^(1/4)-c)/d-(I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((
-I/b*(-a*b^3)^(1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))
^(1/2),(((I/b*(-a*b^3)^(1/4)-c)/d-(-1/b*(-a*b^3)^(1/4)-c)/d)*((1/b*(-a*b^3)^(1/4
)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d)/((1/b*(-a*b^3)^(1/4)-c)/d-(-1/b*(-a*b^3)^(1/4)
-c)/d)/((I/b*(-a*b^3)^(1/4)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d))^(1/2))+((1/b*(-a*b^
3)^(1/4)-c)/d-(I/b*(-a*b^3)^(1/4)-c)/d)*EllipticPi((((-I/b*(-a*b^3)^(1/4)-c)/d-(
I/b*(-a*b^3)^(1/4)-c)/d)*(x-(1/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-c)/d
-(1/b*(-a*b^3)^(1/4)-c)/d)/(x-(I/b*(-a*b^3)^(1/4)-c)/d))^(1/2),((-I/b*(-a*b^3)^(
1/4)-c)/d-(1/b*(-a*b^3)^(1/4)-c)/d)/((-I/b*(-a*b^3)^(1/4)-c)/d-(I/b*(-a*b^3)^(1/
4)-c)/d),(((I/b*(-a*b^3)^(1/4)-c)/d-(-1/b*(-a*b^3)^(1/4)-c)/d)*((1/b*(-a*b^3)^(1
/4)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d)/((1/b*(-a*b^3)^(1/4)-c)/d-(-1/b*(-a*b^3)^(1/
4)-c)/d)/((I/b*(-a*b^3)^(1/4)-c)/d-(-I/b*(-a*b^3)^(1/4)-c)/d))^(1/2)))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{\sqrt{{\left (d x + c\right )}^{4} b + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/sqrt((d*x + c)^4*b + a),x, algorithm="maxima")

[Out]

integrate(x/sqrt((d*x + c)^4*b + a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x}{\sqrt{b d^{4} x^{4} + 4 \, b c d^{3} x^{3} + 6 \, b c^{2} d^{2} x^{2} + 4 \, b c^{3} d x + b c^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/sqrt((d*x + c)^4*b + a),x, algorithm="fricas")

[Out]

integral(x/sqrt(b*d^4*x^4 + 4*b*c*d^3*x^3 + 6*b*c^2*d^2*x^2 + 4*b*c^3*d*x + b*c^
4 + a), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{\sqrt{a + b c^{4} + 4 b c^{3} d x + 6 b c^{2} d^{2} x^{2} + 4 b c d^{3} x^{3} + b d^{4} x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/(a+b*(d*x+c)**4)**(1/2),x)

[Out]

Integral(x/sqrt(a + b*c**4 + 4*b*c**3*d*x + 6*b*c**2*d**2*x**2 + 4*b*c*d**3*x**3
 + b*d**4*x**4), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{\sqrt{{\left (d x + c\right )}^{4} b + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/sqrt((d*x + c)^4*b + a),x, algorithm="giac")

[Out]

integrate(x/sqrt((d*x + c)^4*b + a), x)